The Investigation of Cerebroplacental Ratio and Some Cranial Biometric Measurements in Fetuses with Isolated Congenital Heart Disease
Download Full-Text Article

Keywords

congenital heart defects
fetal hypoxia
Doppler
fetal brain

How to Cite

1.
Ağaoğlu RT, Yakut Yücel K, Oğuz Y, Öztürk Ağaoğlu M, Çelen Şevki, Çağlar AT. The Investigation of Cerebroplacental Ratio and Some Cranial Biometric Measurements in Fetuses with Isolated Congenital Heart Disease. Adv Res Obstet Gynaecol [Internet]. 2023 Jul. 25 [cited 2024 Jun. 16];1(1). Available from: https://arogjournal.org/index.php/arog/article/view/9

Abstract

Objective: In this study, we aimed to compare the measurements of some fetal cranial structures and Doppler parameters between the groups with congenital heart disease and healthy pregnant women.

Materials and Methods: The study included 30 patients with intrauterine congenital heart disease and 30 healthy pregnant women. Fetuses with additional structural and genetic abnormalities were excluded from the study. In both groups, biparietal diameter (BPD), head circumference (HC), transcerebellar diameter (TCD), middle cerebral artery pulsatility index (MCA-PI), umbilical artery pulsatility index (UA-PI), umbilical artery resistance index (UA-RI), and umbilical artery systole/diastole ratio (UA S/D), as well as superior-inferior diameter of the cavum septum pellucidum (CSP) were measured by ultrasound. The cerebroplacental ratio (CPR), which is an indicator of the protective effect on the brain, was calculated. Data were statistically compared between the two groups, and P < 0.05 was considered statistically significant.

Results: A statistically significant difference was found between the groups in UA-RI and UA S/D values. The UA-RI and UA S/D values were significantly higher in the patient group than in the control group (P=0.048; P < 0.001). HC values were lower in the congenital heart disease group, and this result was statistically significant (P=0.047). There was no statistically significant difference between groups in BPD, HC, and TCD Z-scores. There was no statistically significant difference between groups in MCA-PI < 5th percentile, UA-PI > 95th percentile, and CPR < 1 scores.

Conclusion: Congenital heart disease may cause chronic fetal hypoxia during the intrauterine process and lead to changes in the fetomaternal circulation. This study suggests that there may be relationships between fetal cranial biometric retardation and cerebral perfusion changes.

https://doi.org/10.62093/e2305
Download Full-Text Article

References

(1) Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890-1900. doi:10.1016/s0735-1097(02)01886-7

(2) Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130(9):749-756. doi:10.1161/CIRCULATIONAHA.113.008396

(3) Marelli A, Miller SP, Marino BS, Jefferson AL, Newburger JW. Brain in Congenital Heart Disease Across the Lifespan: The Cumulative Burden of Injury. Circulation. 2016;133(20):1951-1962. doi:10.1161/CIRCULATIONAHA.115.019881

(4) Bellinger DC, Wypij D, Rivkin MJ, et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation. 2011;124(12):1361-1369. doi:10.1161/CIRCULATIONAHA.111.026963

(5) Bellinger DC, Wypij D, duPlessis AJ, et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg. 2003;126(5):1385-1396. doi:10.1016/s0022-5223(03)00711-6

(6) Limperopoulos C, Majnemer A, Shevell MI, et al. Predictors of developmental disabilities after open heart surgery in young children with congenital heart defects. J Pediatr. 2002;141(1):51-58. doi:10.1067/mpd.2002.125227

(7) Owen M, Shevell M, Donofrio M, et al. Brain volume and neurobehavior in newborns with complex congenital heart defects. J Pediatr. 2014;164(5):1121-1127.e1. doi:10.1016/j.jpeds.2013.11.033

(8) Miller SP, McQuillen PS, Hamrick S, et al. Abnormal brain development in newborns with congenital heart disease. N Engl J Med. 2007;357(19):1928-1938. doi:10.1056/NEJMoa067393

(9) Jaimes C, Cheng HH, Soul J, et al. Probabilistic tractography-based thalamic parcellation in healthy newborns and newborns with congenital heart disease. J Magn Reson Imaging. 2018;47(6):1626-1637. doi:10.1002/jmri.25875

(10) Misan N, Michalak S, Kapska K, Osztynowicz K, Ropacka-Lesiak M. Blood-Brain Barrier Disintegration in Growth-Restricted Fetuses with Brain Sparing Effect. Int J Mol Sci. 2022;23(20):12349. doi:10.3390/ijms232012349

(11) Rosenthal GL. Patterns of prenatal growth among infants with cardiovascular malformations: possible fetal hemodynamic effects. Am J Epidemiol. 1996;143(5):505-513. doi:10.1093/oxfordjournals.aje.a008771

(12) Manzar S, Nair AK, Pai MG, Al-Khusaiby SM. Head size at birth in neonates with transposition of great arteries and hypoplastic left heart syndrome. Saudi Med J. 2005;26(3):453-456.

(13) Shillingford AJ, Ittenbach RF, Marino BS, et al. Aortic morphometry and microcephaly in hypoplastic left heart syndrome. Cardiol Young. 2007;17(2):189-195. doi:10.1017/S1047951107000248

(14) Barbu D, Mert I, Kruger M, Bahado-Singh RO. Evidence of fetal central nervous system injury in isolated congenital heart defects: microcephaly at birth. Am J Obstet Gynecol. 2009;201(1):43.e1-43.e437. doi:10.1016/j.ajog.2009.03.029

(15) Owen M, Shevell M, Majnemer A, Limperopoulos C. Abnormal brain structure and function in newborns with complex congenital heart defects before open heart surgery: a review of the evidence. J Child Neurol. 2011;26(6):743-755. doi:10.1177/0883073811402073

(16) Khalil A, Suff N, Thilaganathan B, Hurrell A, Cooper D, Carvalho JS. Brain abnormalities and neurodevelopmental delay in congenital heart disease: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2014;43(1):14-24. doi:10.1002/uog.12526

(17) Rizzo G, Pietrolucci ME, De Vito M,et.al.. Fetal brain biometry and cortical development in congenital heart disease: A prospective cross sectional study. J Clin Ultrasound. 2023 Jan;51(1):84-90. doi: 10.1002/jcu.23308

(18) Peyvandi S, Xu D, Wang Y, Hogan W, Moon-Grady A, Barkovich AJ, Glenn O, McQuillen P, Liu J. Fetal Cerebral Oxygenation Is Impaired in Congenital Heart Disease and Shows Variable Response to Maternal Hyperoxia. J Am Heart Assoc. 2021 Jan 5;10(1):e018777. doi: 10.1161/JAHA.120.018777

(19) Jansen FA, Everwijn SM, Scheepjens R, et al. Fetal brain imaging in isolated congenital heart defects - a systematic review and meta-analysis. Prenat Diagn. 2016;36(7):601-613. doi:10.1002/pd.4842

(20) Masoller N, Sanz-CortéS M, Crispi F, et al. Mid-gestation brain Doppler and head biometry in fetuses with congenital heart disease predict abnormal brain development at birth. Ultrasound Obstet Gynecol. 2016;47(1):65-73. doi:10.1002/uog.14919

(21) Jaimes C, Rofeberg V, Stopp C, et al. Association of Isolated Congenital Heart Disease with Fetal Brain Maturation. AJNR Am J Neuroradiol. 2020;41(8):1525-1531. doi:10.3174/ajnr.A6635

(22) Donofrio MT, Bremer YA, Schieken RM, et al. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol. 2003;24(5):436-443. doi:10.1007/s00246-002-0404-0

(23) Clouchoux C, du Plessis AJ, Bouyssi-Kobar M, et al. Delayed cortical development in fetuses with complex congenital heart disease. Cereb Cortex. 2013;23(12):2932-2943. doi:10.1093/cercor/bhs281

(24) Hinton RB, Andelfinger G, Sekar P, et al. Prenatal head growth and white matter injury in hypoplastic left heart syndrome. Pediatr Res. 2008;64(4):364-369. doi:10.1203/PDR.0b013e3181827bf4

(25) Berg C, Gembruch O, Gembruch U, Geipel A. Doppler indices of the middle cerebral artery in fetuses with cardiac defects theoretically associated with impaired cerebral oxygen delivery in utero: is there a brain-sparing effect?. Ultrasound Obstet Gynecol. 2009;34(6):666-672. doi:10.1002/uog.7474

(26) Majnemer A, Limperopoulos C, Shevell MI, Rohlicek C, Rosenblatt B, Tchervenkov C. A new look at outcomes of infants with congenital heart disease. Pediatr Neurol. 2009;40(3):197-204. doi:10.1016/j.pediatrneurol.2008.09.014

(27) Szwast A, Tian Z, McCann M, Soffer D, Rychik J. Comparative analysis of cerebrovascular resistance in fetuses with single-ventricle congenital heart disease. Ultrasound Obstet Gynecol. 2012;40(1):62-67. doi:10.1002/uog.11147

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Recep Taha Ağaoğlu, Kadriye Yakut Yücel, Yüksel Oğuz, Merve Öztürk Ağaoğlu, Şevki Çelen, Ali Turhan Çağlar

Downloads

Download data is not yet available.